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1. INTRODUCTION

The objective of this study has been to develop an angle of arrival

I t estimation technique that would perform reliably in the presence of high

powered jammners which are stronger by up to several orders of magnitude

than the desired signal whose angle is to be estimated. The angle

estimate is aimed at a demand assignment TDMA SATCOM system employing

high gain switchable downlink beams. A high accuracy angle estimate

would permit the establishment of a reliable communication link whose

quality would greatly exceed that of a system employing an earth

coverage beam.

Various approaches have been used to accomplish angle of arrival

(AoA) estimation, the best known is the monopulse system. The monopulse

system provides a good AoA estimate as long as the noise is limited

to receiver noise or uniformly distributed background noise. The

presence of strong directional interfering signals (jammers) would

drastically degrade the estimation, however, and the monopulse system

would no longer be useful.

Adaptive arrays are ideally suited for the suppression of jammers

and the maximization of signal to interference plus noise ratios. It

would thus appear to be very advantageous if an angle of arrival

estimation system would incorporate an adaptive array in its processor.

Indeed, Davis, et. al., [1] extended the theory of adaptive array to the

angle estimation problem. Based on the maximum likelihood theory of

angle estimation, they proposed an AoA estimator which can be readily

implemented using adaptive arrays. The estimator requires the knowledge



of the covariance matrix of the element signals in the absence of the

desired signal. This requirement can be accommodated in a TDMA system,

and consequently the estimator will be further examined in this report

under various jamming scenarios.

fhe estimator involves sum and difference beams, w' ' are

-.: analogous to those used in conventional monopulse anten The

estimator, therefore, will be called the monoestimator. will be

shown that if one has some prior knowledge of the AoA oi .,e desired

signal the monoestimator provides an accurate estimate of the AoA

(within a fraction of a beamwidth). If however, the expected AoA is not

within a half beamwidth of the actual AoA the 'monoestimator' generally

breaks down. An alternative estimator is, therefore, proposed in this

work. It is also based on the maximum likelihood theory of angle

estimation and requires the knowledge of the covariance matrix. But no

prior knowledge of the AoA is needed. The new estimator called the

'Q-estimator' can also be implemented using adaptive arrays. It is

shown that the Q-estimator provides very accurate estimates of the AoA

(within one tenth of a beamwidth) as long as the jammers are outside the

.main beam of the array. As the angular separation between the desired

signal and the jammer decreases, the accuracy of the Q-estimate

degrades. However, the estimated AoA still remains within a quarter of

a beam width of the true AoA and is therefore adequate for a switched

downlink beam of a TDMA system. Furthermore, the Q-estimate can be used

as an initial estimate for the monoestimator, further improving the

final accuracy for close-in jammers.
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In Section 2 the two estimators based on the theory of maximum

likelihood estimation are presented. The computer simulation of the two

estimators is discussed in Section 3. Some system aspects are also

given in this Section. Simulated results are presented and discussed in

Section 4. Section 5 contains a summary and conclusions.

2. MAXIMUM LIKELIHOOD ESTIMATES OF THE AoA

Maximum Likelihood Methods (MLM) can provide estimates of the

directions and strengths of all signals incident on an antenna array.

The achievable accuracy of these estimates are indicated by the

Cramer-Rao (CR) bound [2]. Maximum Likelihood Procedures come close to

achieving the CR bound. El-Behrey, et. al. [3], have s~iwn that the ML

estimate virtually attains the C1R boun6 when the signal to noise ratio

or the number of antenna elements exceed a given threshold. Similar

results were reported by Ksienski and McGhee [4] in a decision theoretic

approach to angle estimation.

In this study the covariance of the signals obtained from the

antenna elements are used to obtain a Maximum Likelihood estimate of the

angle of arrival of the desired signal. Two separate measurements are -

required to obtain the estimate. One measurement involves the outputs

of the antenna elemnents in the absence of the desired signal hut

4 including all corruptive influences such as internally and externally

generated noise and directional interfering sources. The other

measurement would include the above as well as the desired signal. In a

TDMA system these measurements can be accomplished during properly

3



allocated times. The covariance matrix can be estimated in the period

preceeding the time slot during which a request by a new terminal is

being made, and the estimation of the AoA will be carried out during

the time slot.

Two methods based on the known covariance matrix are presented in

this work. In both methods the procedure used to estimate the AoA leads

to sum and difference beam patterns, which can be implemented with

adaptive receiving array antennas employing a separate control loop for

each element [5]. When directional sources are present both the sum and

the difference beams have nulls in the directions of the signals

included in the covariance matrix. Since the desired signal is excluded

from the covariance matrix, the sum beam would not have a null in its

direction. Indeed, the weights for the sum beam are chosen to produce

maximum signal-to-noise ratio in the steered (desired signal) direction.

The null of the difference beam coincides, however, with this direction

only when the interference is isotropic.

In the method by Davis, et. al. [1] the likelihood function is

expanded around an expected AoA, and the sum beam points to the expected

AoA direction. The algorithm or estimator is used to compensate

for any bias, i.e. the difference between the expected and the true

angle to produce an accurate estimate of the AoA. For the particular

case of isotropic noise the estimator acts like an ordinary monopulse

system. For this reason the estimator will be called a 'monoestimator'.

Just as a monopulse system the monoestimator is accurate if the actual

AoA is within a beamwidth of the expected AoA.

4



In the second method, the global minimum of a Q-function (obtained

from the likelihood function) is found. The estimator is called the 'Q-

estimator'. The accuracy of the Q-estimator does not depend on an
b

expected AoA, it is limited only by the angular sampling interval used

to search for the minimum of the Q-function and by the noise and

jamming environment.

In Section 2.1 the likelihood function is derived for a inear

array of isotropic elements in the presence of jammers and internal

noise. The monoestimator is discussed in Section 2.2. Section 2.3

deals with the Q-estimator. While the following analysis is restricted

for simplicity to linear arrays of isotropic elements, the theory and

estimators derived here can be readily generalized to arbitrary array

geometries of isotropic or directive elements.

2.1 The Likelihood Function for a Linear Array of Isotropic
Elements

In this section the likelihood function for a linear array of

isotropic elements is derived. The derivation is based on the previous

work of Davis, et. al. [1]. The system is assumed to be narrowband,

consequently the complex envelope of the signal at the output of all

array elements may be assumed to be identical. This assumption permits

a limited bandwidth without incurring substantial mathematical

complications.

Let the array consist of L elements. A signal arriving at an angle

0, measured with respect to broadside, will produce a signal vector

S(t) at the antenna elements, given by

5



S(t) = b V(e) • (1)

where _

e

e X

L
e

and Pk= the coordinate of the kth element

= sini

=wavelength of the carrier wave

b = complex envelope of the signal at a reference point.

If the signal is contaminated by noise, due to the receiver and

external interference, then the total received signal X(t) is

X(t) = S(t) + N(t) . (3)

where N(t) is the received noise vector, given by

4i

nl (t)
n2(t)

N(t) = • (4)

nL(t)

where ni(t) is the total noise (internal as well as external) at the ith

" element. 7

6



If one assumes that the components of N are jointly Gaussian, then

the probability density for N can he written as.

= 1 1 exp {-N'M-N} (5)

where N* = denotes complex conjugate transpose of N

M = covariance matrix of the element outputs with both internal
and external noise but in the absence of the desired signal

M = E {N N*}

IMI = the determinant of M

E{.} = denotes ensemble average which may be replaced by a time
average by invoking the ergodic hypothesis.

From Equations (1) and (3) the probability density for the signal-

plus-noise process is

P(X/S) 1 1 exp {-[X-bV()]* M-_ [X-bV()i} (6
() (6)

The vector X in Equation (6) is the sampled data set from the L

antenna elements and Equation (6) is the likelihood function. Note

that it is a function of b and e. To obtain an estimate of e one'4
searches for the values of b and e which maximize the likelihood

function. It is convenient to find the maximum of the likelihood

function by minimizing the negative of the logarithm of the likelihood

function. This is equivalent to minimizing the quadratic form

Q(Xlb,e) = [X-bV()]* M-l[X-bV(e)] . (7)

;4



with respect to b and e. In this minimization the covariance matrix M

is assumed to be known or is estimated from data samples. Equation (7)

can also be written as

Q(X/b,e) = XM'x - (X M-VI/V M1 V) (8)

lVM. 1V b-(V 1  2 '

+ VM- 1Vlb-(V*M-Ix/v M lV)
Since the last term in (8) is always positive and real, 0 is

minimum for

= V .X/VMV (9)

The value of b in Equation (9) is the ML estimate of b.

Substituting this value of b in Equation (8), Q(X/b,c) reduces to a

function of e alone, namely,

Q(C) = X*M-Ix _ (i x *M-VI/V*M-V) . (10)

The quadratic form in Equation (10) will be called the '0-

function'. Te obtain an estimate of c which depends on the data X and

the covariance matrix M one finds the value of e which minimizes the 0-

function. One method would be to let

dQ Q = 0 and solve for e.
de

--is a transcedental equation in c and therefore requires tediousde

numerical techniques for its solution. Two alternate methods to find C

which minimize the 0-function are given next. The two methods lead to

sum and difference beams, which can be implemented using adaptive

arrays, or be obtained by computation.



2.2 The Monoestimator

The monoestimator is based on expanding the Q-function around a

given angle ("expected AoA"). Let el, be the expected angle of arrival,

then

2 2Q(C) = Q(CI ) + € (C. CI) + 21 dVQd2 I (  - I  • 11

and,

IcL d _ d2 Q1  ( )  (12)
de d 2e

At the minimum, =a 0. Therefore,

- . (13)

where

d 2Q
Q Q- and Q d

This estimator was studied by Davis, et. al. [1] and was found to

produce rather noisy estimates for the cases considered. It was then

modified by replacing the denominator in Equation (13) by an averaged

value, E{QIEIj I which resulted in a better performance. The estimator

studied in this work, therefore, is given by

SQccl(14)

E {QeeilIO9



Assuming that the maximum likelihood estimate of b is given by

• .Equation (9), Equation (14) can be rewritten [1] to give

2---
£ = b11(+JE) " z(b12+b21) * bll (15)

2ff(bllb 22 - b12b21 )

where

bll = E{fz-J = V*M-1V

b12 = E{EX} = V*MIDV. (16) "
b21 = E12

b2= E{} - V*DM-lDV

D - j 2w diag. (pl' P2, . , (17)

W X * MX (18)

'"* *DM-1X l "
A= W X =-VDM X (19)

A

In above Equations, () denotes complex conjugate and diag (Pk)

denotes the diagonal matrix with elements Pk. Note that E and A are

linear functions of the data X and W is the optimal steady state weight

vector of an adaptive array steered to receive signals from the

direction defined by vector V in the presence of interference and noise

included in the covariance matrix M.

If the only noise of the system were receiver noise, then the

covariance matrix M would be proportional to the identity matrix I.

10



Under such condtlons the present system reduces to a monopulse where, E

is called a 'sum beam' and A a 'difference beam'. For this reason Z

and A in Equations (18) and (19) will be called generalized sum and
,*o -

difference beams, respectively. The weight vectors WE and WA are such

that the two beams form nulls on the interference sources. In the

absence of all jammers the difference beam has a null at the peak of the

sum beam, but this may not be so for nonisotropic noise or in the

presence of interference. The sum and difference beams can be

implemented with adaptive array antennas employing a separate

control loop for each element. Steering signals for the sum-beam array

are V(cl), i.e., the signals are matched to an incident plane from the

angle corresponding to el. The corresponding steering angles for the

difference beam are -DV(cI). Thus an adaptive array can be used to

estimate the AoA of a desired signal in the presence of internal noise

as well as interference. The estimate is given by Equation (15) and the

estimator is called the 'monoestimator'. The estimation process can, of

course, be carried out computationally by sampling the antenna element

output signals and computing all the terms in Equation (15).

*@ 2.3 The Q-Estimator

The monoestimator discussed in Section 2.2 assuges that the AoA is

approximately known. If this "expected" valued is close (within a

fraction of a beamwidth) to the true AoA the final estimate will be

quite accurate. If, on the other hand, the expected angle is off by a

beamwidth or more the final estimate will be poor. To demonstrate it,

one can take the case when only receiver noise is present.

11
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In the absence of all jammers, the covariance matrix, M, reduces to

U the identity matrix (assuming that the system noise is normalized such

that the receiver noise power at each element is equal to unity) and

Equations (16), (17) and (18) yield,

V*X

A = -V*DX

bll = L
L 2 npk '2

b12 = J Y
k=1

L 27
b22  Pk

k=1

For a symmetrical array centered at p=O; bl2=b2l=O and Equation

(15) reduces to

^ E L Re --) •(20)

Substituting wPk (sin s - sine1 ), where as is the true AoA

of the desired signal and e1 is the expected AoA of the desired signal,

Equation (16) yields

kya Yk si n
C + L k( '21)

kk kcos ak
k' k

where y 2Wpk
k X

E= sines

e = sin 61

12
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The expected AoA, el, defines the steering angle of the sum beam.

If the true AoA, es, falls within the main beam of the array, the sign

of the correction term in Equation (21) is determined by the sign of

8s-01. Thus for a small error in the expected value of the AoA, the

correction term adjusts the expected value to give a good estimate of

the AoA. For large deviation where (Os-el) approaches a heamwidth, the

individual element contributions no longer add in phase and thus the

second term in Equation (21) may no longer provide a correction term

even of the correct sign, thus further biasing the estimate. For a good

estimate, therefore, the expected value of the AoA in a monoestimator

should be within a 3 dB beamwidth of the array.

Such an accurate guess is not very likely with the narrow

beamwidths required for the present spot beam SATCOM system. If,

however, an AoA estimate accurate to within a fraction of a beam can he

obtained by another approach it could provide an input to the

monoestimator which would then yield very accurate final AoA's. Such an

estimate can be provided by the O-estimator discussed next.

The Q-estimator can provide adequate estimates on its own, i.e.,

provide the correct AoA within a quarter of a 3 d9 beamwidth and often

can do much better. But in very heavy jamming scenarios a combination

of both approaches may be preferable and could provide estimates to

within an eighth of a 3 dR beamwidth.

To find the AoA, using the Q-estimator, the 0-function (Equation

10) should he minimized. SinrP it is a function of the direction vector

V, it can be minimized with respect to V. The vector V=Vmin which

13
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minimizes the Q-function will yield the AoA. The 0-function is given by

Q(V) = X*M-lX - IV*M-lXI2 / V*M-1V (22)

where

X = N+S (consists of sampled antenna element outputs)

S is the signal vector whose direction vector Vs is to be

estimated.

Note that only the second term in Equation (22) is a function of V,

hence one can minimize the function Q1 given by,

QI(V) = V*M-IV / IV*M-IXI2  (23)

= b1l / ZE (24)

Simulation results have shown, however, that the minimum of the 0-

function is sharper and thus more easily detectable than that of the 01

function. The reason for it appears to be related to the fact that the

first term of 0 contains the total signal X which includes noise

components that are also present in the second term. There seems to he

a certain amount of compensation provided by the first term to the

second term of 0 which 01 does not have. This results in less noisy

* behavior of Q.

The Q-estimator discussed above involves scanning of the array

beam. The angular accuracy of the estimator, therefore will depend upon

* the scanning step size. To get the minimum, one can proceed as follows.

Let us assume Q to be a parabolic function of the argument c near

the minimum (c is the direction cosine of the vector V with respect to

"* the array broadside). Then

14
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(C)= 00 + a(c-S)2  (25)

where is the minimum value of Q, cs defines the minimum direction

cosine and a is a constant.

es can be estimated from three values of 0 which are used to

eliminate 0o and a. Let the value of the Q-function be known for el,

E2, and e3 and assume that Q(C2) is the smallest of the three, then

C A Q(C3) Q(Cl) (26)
2 2Q(c 2) - [M() + Q(3)]

where AC = c3-C2 = 2-C1 > 0

A note of caution, however, is appropriate at this point regarding

the ultimate accuracy of the estimate. The Q-function is noisy even

with ideal signal processing, since it depends on samples from noisy

sources. In an actual implementation, quantization noise from AD

converters and errors due to digital computations would also contribute.

These errors are not included here, but will affect the final accuracy

of an implemented system. To reduce the various noise effects it is

anticipated that the Q-function will have to be averaged over a number

of samples. In a practical system the number of samples averaged will

have to be kept small, however, to minimize complexity and time delay.

In the next two sections simulation results using two estimates

will be presented. The AoA will be estimated for different interference

scenarios.
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3. SYSTEM ASPECTS AND SIMULATION

A computer model for the simulation of the monoestimator and the Q-

estimator was developed. The estimation procedures involve two steps.

In the first step the covariance matrix is calculated from the element

*signals. At this step internal and external noise sources and

interference are included but no desired signal is assumed to be

present. In the second step the AoA of the desired signal is estimated

from the sampled element signals with all sources including the desired

signal assumed present. Since the results depend on the simulation

model and noise generators, the model will be discussed in detail.

The simulation model is discussed in Section 3.1. Since the system

of interest is a satellite based TDMA system, the system aspects are

given in Section 3.2. Section 3.3 contains basic assumptions.

3.1 The Simulation Model

a) Generation of the antenna element signals

Three different types of signals are assumed to be incident on

the array elements: Gaussian nonisotropic (directive) noise, CW

*0 interferences and a CW desired signal. Receiver noise is also

present.

The internal noise is independently generated for each element.

* The complex noise voltage is assumed to have a Rayleigh amplitude

distribution and uniform phase with average power of unity. The noise

voltages can, therefore, be represented by

Sn= g + Jg 2  . (27)
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wher'e gt and 92 have normal distributions [p=O, a=1]. The same

model is used to generate the voltage from Gaussian nonisotropic noise

(noise type jamming sources) of power Pj. The voltage due to one of

these jammers, at the reference element, is given by

ni = J (gil + Jg12) • (28)

The voltages at the other elements are

n ik *n exp LX Ei~k-P) (29)

where i defines the direction of the jammer and Pr is the location

of the reference element.

The CW signals incident on the array are assumed to have a constant

envelope but a randomly varying phase for successive time samples as

seen at the reference element. The voltage at the reference element due

to a CW signal is, therefore, given by

n =PCW exp (j2wn) (30)

where n is uniformly distributed over the interval [0,1]. The

voltages at the other array elements due to this CW signal, therefore

a re

n n exp (i21T (31)nCW k nCW ep<__2 CW IPk- Pr)) 31

where eCW defines the direction of the CW signal.

17



b) Generation of the covariance matrix

The elements of the covariance matrix are given by

mkj = E{xX xj} . (32)

where xk=kth element signal and E{. 1 denotes ensemble average. For

an ergodic process the ensemble average is equal to the time average.

Two separate methods to compute the covariance matrix are given. The

first one, which assumes a 'known' covariance matrix, does not use

randomly generated element signals but assumes the interference scenario

to be known. In this case,

Nj

m = k exp[j(.ik )k + % (33)mXi k=1 PJk ( k- 90k + i "

where Nj is the total number of jammers,

PJk is the kth jammer power (normalized to receiver noise),

fik is the kth jammer phase at the ith element measured with
respect to reference element,

Ski is the Kronecker delta.

In the second method the sampled element signals are used to

* calculate the covariance matrix elements. This leads to the "unknown"

or estimated covariance matrix. The desired signal is assumed to be

absent while the sampling of the elements is being carried out. The

* estimated covariance matrix elements are given by

NS

m 1 E x x (34)m Ni= k=1 Xk ik

18
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*where NS is the number of the independent time samples used for

averaging.

This estimate of the covariance matrix gives the maximum likelihood

estimate of M and will be denoted by M.I
c) Angle of Arrival Estimation

The monoestimate and the Q-estimate of the AoA are found by using

the sampled antenna element signals generated during the time slot when

the desired signal is assumed to be present. While calculating the

correction factor for the monoestimator and the Q-function for the Q-

estimator an average over a number of samples is taken. The accuracy

of the estimate depends on the number of samples used. It is, of

course, desirable to keep the total number of samples as low as possible

to minimize the computational burden and time delay. Results for

different number of samples will be given in Section 4.

3.2 System Aspects

The values of the parameters chosen in the simulation are

appropriate to a SATCOM system which uses a spot beam pointing, at any

direction within the earth field of view, an approximately 170 x 170

cone from a synchronous orbit. -1

The antenna element patterns must, therefore, cover the earth field A

of view. If the array elements have a beamwidth of 200 x 200, the

resulting element directivity is about 20 dB. The element beamwidth of

200 requires an element aperture of about 2.5x. This also means that an

19



inter-element distance of at least 2.5X is necessary. Assuming that a

spot beam of 10 is required (3db beamwidth) the required aperture dia-

meter would be approximately 50X. The corresponding aperture size would

be 250X if 0.20 spot beam is required. For a linear array the number of

elements would be 20 and 100, respectively.

The AoA estimator should use as few of the array elements as possible

(to increase the speed). The total number of elements required for AoA

estimation depends on the specific system requirements for angular

resolution and the necessary accuracy of the AoA estimate. It is also

affected by the number of jammers (the total number of elements should

exceed the total number of jammers). The simulation results using five

and ten elements are given in Section 4. The jammer scenarios include

one and two jammers.

Following is a sample calculation of the received signal-power per

element and the signal to noise ratio at the output of the array

elements,

Earth Terminal (assuming a small mobile terminal): Transmitted

power = 1 KW at X-band from a 2 meter diameter antenna, gives a

@ PG-product of - 76 dBW.

Transmission loss: Atmosphere ~ 3 dB and propagation over 40,000

is approximately 163 dB.

Satellite array element: Element loss - 3 dB.

Receiver: A noise figure of 3 dB gives an equivalent noise power of

-141 dBW/MHz of receiver bandwidth for a noise temperature of 3000 K.

The resulting signal-to-noise-ratio is then 28 dB for a 1 MHz

receiver bandwidth. For a 10 MHz bandwidth, the estimated received

20
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signal-to-noise ratio is about 15-20 dB per element. Most results are

for 10 dB signal-to-noise ratio, thus providing some margin.

, - As discussed before, the desired signal should not be present when

estimating the covariance matrix. In a TDMA system, either silent time

slots should be schedule in the time frame, or to increase throughput

the covariance matrix can be updated during the transmission of a

current terminal and the angle estimation carried out during the

following "listening" slot. This would cost at most an additional null

in the direction of the previous transmitter.

3.3 Assumptions in the Simulation

The covariance matrix is simulated by two different methods. One

assumes that the covariance matrix is known a priori and the other

estimates the matrix by sampling the antenna elements and carrying out

the correlation. In the case of a known covariance matrix the receiver

noise voltages at each of the array elements are assumed to be

uncorrelated with each other and with the incident signals. Further,

the incident desired signal and the jammers are assumed to be

uncorrelated. These assumptions lead to a positive definite covariance

matrix.

The estimated covariance matrix is calculated using sample antenna

element signals. The element signals due to each incident source are

assumed to be correlated while the signals due to receiver noise are

assumed to be uncorrelated. Further, element signals due to different

incident sources are assumed to be uncorrelated.
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All the incident signals on the array are assumed to be CW signals

of the same frequency. The covariance matrix is assumed to include all

the jammiers but not the desired signal.

In practical systems quantization noise from A/D convertors and

digital computation may contribute to performance degradation, but these

are not considered in the simulation. The only noise present,

therefore, is contained in the sample element signal vector X discussed

and defined above. To reduce this noise the results are averaged over a

number of samples. In a practical system the total number of samples

should be kept small.

Finally, the array is assumed to have enough degrees of freedom to

null all the jammers.

4. SIMULATED RESULTS AND DISCUSSION

In this section some typical estimates of the AoA using a simulated

monoestimator and a Q-estimator are presented. The estimator using the

Q-function (Equation (22)) provides better results than using the Q1

function (Equation (23)) and consequently the Q-function is used in most

of the results to be shown. Sum and difference patterns are also

presented for the purpose of illustration. The AoA is estimated for

several scenarios, namely in the absence of all jammers, in the presence

of a single jammer and in the presence of two jammers.
0

Section 4.1 contains the result using the known covariance matrix.

The estimates using the estimated covariance matrix are given in Section

4.2
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4.1 Known Covariance Matrix

a) AoA Estimation in the Absence of all Jammers

Figure 1 shows the estimated AoA, Smono, using the monoestimator,

as a function of the difference between the expected AoA and the true

AoA in the absence of jammers. The estimated AoA is given for different

input signal-to-noise ratios denoted as Ps and given in terms of db over

noise or dBN. Note that for a good estimate the expected angle should

be within half a beamwidth from the true AoA. The resulting accuracy is

then within one tenth of the beamwidth of the array. If the expected

AoA is within a quarter of the beamwidth the resulting accuracy is

better than 3 percent of the beamwidth. In the above computation the

results were averaged over 100 samples. If a smaller number of samples

is used a larger input signal-to-noise ratio is needed to achieve the

same accuracy in the estimate of the AoA. For example, for an average of

10-20 samples a minimum of 5 dB Ps/N is required. At 0 dBN the accuracy

degrades to about a quarter of a beamwidth.

Figure 2 shows a plot of the Q-function versus (e-es) the

difference between the scan angle e and the true angle es for different

values of Ps. The angular sampling is at quarter of a beamwidth
.4

intervals and the results are averaged over ten sampling sets. Note

that the estimated AoA (minimum of the Q-function) is very accurate for

P5 as low as OdBN. The accuracy is within 2 percent of the beamwidth.

If the angular sampling rate is decreased to one beamwidth the

performance degrades, but it was found that the Q-estimator is not as

sensitive to the number of time samples as the monoestimator.

23

r4



Bis8MONO -8

G~B4.20

1.5-

* 1.0

* x

0

xI

- 4 - -22 3

0. 0 * / ASSUMED Ao A

A-0.5- 0

-1.5 x

Figure 1. Estimated AoA as a function of the assumed AoA for the

monoestimator. Averege over 100 samples. Array 3 dB-

0 beamwidth 03d8=4.20 with 5 or 10 elements. True AoA

of the desired singal es=00. No Jamming.

o Ps = 0 dRN/5 elements

* 0 Ps = 0 dBN/10 elements

x P5 = 5 dBN/5 elements

+ P5 = 10 dRN/5 elements

* 0 Ps = 20 dBN/5 elements
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Figure 2. Q-function versus (o-0s). Averaged over 10 samples.

t* No jamming. Curve parameters same as for Figure 1.
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Doubling the number of elements while keeping the beamwidth

constant does not affect the estimation accuracy.

b) AoA Estimation in the Presence of One Jammer

Figure 3 shows the bias in the estimated AoA for both the

monoestimator (with expected AoA of -2, -0.4° and 1.2° respectively)

and for the Q-estimator (using angular sampling rates of 1.60 and 0.2° )

as a function of the angular displacement between the AoA of the desired

signal and the jammer. The array consists of five elements spaced 2.5X

apart and has a beamwidth of 4.20. Both signals are 10 dR stronger than

the receiver noise at each element.

For the monoestimator, if the expected AoA is close to the true

AoA, and is not between the jammer and signal direction, good estimates

result even for small angular separation between the signal and the

jammer. Indeed the estimate is as close as 0.10 or about 3 percent of

beamwidth. For large discrepancies between the true AoA and the

expected AoA the monoestimator seems to breakdown when the jammer

approaches the desired signal to within a quarter of beamwidth. Also,

when the expected AoA is closer to the jammer than to the desired signal

the estimate is less reliable.

The estimated AoA's obtained using the Q-estimator for a sampling

density of 1.60 or .4 beamwidths are good as long as the angular

separation between the desired signal and the jammer is fairly large.

Although the estimates degrade as the jammer approaches the desired

signal the degradation is graceful and the estimate still provides a

fairly good indication (within a quarter of a beamwidth) of the location
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Figure 3. Estimated AoA using a 5 element array, spaced 2.5X apart

as a function of the angular distance between one jammer

at 6j and the desired signal at Os=0 °. Averaged over

20 samples.

Signal power Ps=10 dBN

Jammer power Pj=10 dBN

0 0Mono resulting from expected AoA of -2.0

x eMono resulting from expected AoA of -0.4'

+ 9Mono resulting from expected AoA of +1.2'

o 0 for angular sampling density of 1.60
A

A 60 for angular sampling density of 0.2,

Q-values averaged over 10 time samples.
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of the desired signal, and would provide a good "expected" angle for the

*monoestimator. To further improve the 0-estimate a higher sampling

density can be used resulting in excellent accuracy. For a sampling

density of 0.20 the estimate is within 0.10 (.025 of a beamwidth), or

half the intersample distance.

An added advantage of the Q-estimator is the insight provided into

the reliability of the estimate which is gained in the process of

- computing the values of 0 at the different scan or sample angles. One

can observe whether there is smooth convergence to the minimum or an

erratic behavior. Also it is rather apparent when there is a need for

closer sampling. This compares to just a number obtained from the

monoestimate which gives no hint as to its quality. One could, of

course, in principle compute the variance of the estimate if a

statistically sufficient number of samples and computation time were

available.

Figure 4 shows the estimated AoA when the number of elements is

increased to ten while keeping the beamwidth constant. There is no

significant improvement in the performance of the two estimators. In

the following discussion, therefore, only the 5-element array will be

considered.

In Figures 5 and 6 the jammer power is increased to 30 dB and 50 dR

respectively. The monoestimator performance is improved a little, in
S

that the jammer can be moved closer to the desired signal. However, the

Q-estimator seems to fail when the angular separation between the jammer

and the desired signal approaches a tenth of the beamwidth. This

2

28

0



. +- . 2 2.7 +.2.0

"t t '

1.0

0.5 -
L.J

CD0

uJ x
0 x

0.0

-o 0_., 0. i.o 4.0 8.0 ej (DEGREES)

-0.5 -

Figure 4. Estimated AoA using a 10 element array spaced 1.25X apart

as a function of the angular distance between one jammer

at 8j and the desired signal at Os=0O. Averaged over 20

samples.

O  Signal power Ps=I dRN

Jammer power Pj=10 dBN

* eMono resulting from expected AoA of -2.00

* x eMono resulting from expected AoA of -0.4*

+ eMono resulting from expected AoA of +1.20

o O for anoular sampling density of 1.60

" Q-values averaged over 10 time samples.

29



a

I.0

050

S0.5-

UJ

L"J 0.580.10
,, . I20 .*6 (DEGREES)

-o4 0 8.0 6
+ +

-0.5-
0

-1.0

-I.8

Figure 5. Estimated AoA using a 5 element array as a function of

the angular distance between one jammer at Oj and the

desired signal at 6,=0c. Averaged over 20 samples.

* Signal power Ps=10 dBN

Jammer power Pj=30 dBN

* eMono resulting from expected AoA of -2.00

x eMono resulting from expected AoA of -0.40

+ 0Mono resulting from expected AoA of +1.20

0 OQ for angular sampling density of 1.60

* 0-values averaged over 10 time samples.
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Figure 6. Estimated AoA using a 5 element array as a function of

the angular distance between one jammer at ej and the

desired signal at Os=O0. Averaged over 20 samples.

* Signal power Ps=10 dN

Jammer power Pj=50 dN
r

S eMono resulting from expected AoA of -2.0'

•x OMono resulting from expected AoA of -0.4'

+ 8Mono resulting from expected AoA of +1.2

o 8Q for angular samplinq density of 1.60

* Q-values averaged over 10 time samples.
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effect can be seen in more detail in Figure 7, which shows the Q-

function plotted as a function of steering direction. Note that for a

large difference between the jammer power and the signal power the

Q-function is quite flat and the minimum is displaced by several degrees

from the true AoA.

Note that the Q-estimates are consistently biased away from the

jammer, i.e., OQ is negative while the jammer location ej is positive.

It is thus apparent that the Q-estimate would provide the right bias in

the expected AoA for the optimum performance of the monoestimator.

Indeed using the Q-estimate as an input to the monoestimator yields

excellent results. This is shown in the legend of Figure 7 by + Mono.

Thus the first line indicates a three-fold improvement for ej=20 where

BQ=O.290 leads to eMono=0.10. The improvement is even larger for high

jammer powers and Oj=I, resulting in OQ=-l° + OMono=O.2°.

When the signal power, is increased to the same level as the jammer

power (30 dB), the accuracy of the Q-estimator improves (Figure 8). The

monoestimator, though, still gives estimates which are sensitive to the

jammer scenario, yet the accuracy is better than in the previous

0 1scenarios. The sum patterns and the difference patterns are helpful in

understanding the performance of the monoestimator and are discussed in

the following pages.

* Figures 9-15 show the adapted sum and difference patterns for

various jammer scenarios and expected AoA's. In Figures 9 and 10 the

angular separation between the jammer and the expected AoA is more than

0 a beamwidth (BW=4.20 , ej~16°). Note that sum and difference patterns
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Figure 7. Plots of Q-function, averaged over 10 samples, for

different scenarios. 5 element array (03 dB=4.20).

Desired signal power P5=10 dBN, true AoA os=O*.

*Angular sampling density 1.60 for Q

9 Pj=10 dBN, Oj=2o gives 6Q=-.290+OMono=0.10

* P =10 dBN, =140 gives Q .0+ on .5

*o Pj=10 dBN, 01=50 gives OQ=-100+OMono=0.5O

0 P1=30 dBN or 50 dBN, ej=2 gives 6Q=-0.150+6Mono=0.15o

P1=30 dBN or 50 dBN (--) 0=10 gives ;Ql'Mono-02

ej=0.31 gives OQ=-0.40+OMono=0.15O.
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Figure 8. Estimated AoA using a 5 element array as a function of

the angular distance between one jammer at Oj and the

*g desired signal at Os= 0 0  Averaged over 20 samples.

Signal power Ps=30 d9N

Jammer power Pj30 d9N

O eMono resulting from expected AoA of -2'

x 8Mono resulting from expected AoA of -0.4*

+ eMono resulting from expected AoA of +1.20

* 0 OQ for angular sampling density of 1.60
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Figure 9. Sum and difference patterns for a 5 element array with

inter-element spacing 2.5X. The sum pattern is

represented by a solid line, the difference pattern

is denoted by a solid line drawn through circles for

which the values were computed.

Steering angle Oexp=- 2 *

Jammer with power Pj=1O dBN at Oj=l6'
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inter-element spacing 2.5x.

Steering angle eexp=l.20

Jammer with power Pj=10 dBN at j=160
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are similar to those of a monopulse system. The null of the difference

pattern coincides with the peak of the sum pattern, and they both point

at the expected AoA.

Moving the jammer closer to the expected AoA causes only a slight

distortion of the sum and difference patterns until the jammer falls

within the mainbeam of the array. In Figures 11-13 the jammer is at 40

while the beam is steered at -2°, -0.4' and 1.20 respectively. Note

that the patterns are not distorted much for -2' and -0.4, but for a

1.20 steering angle the difference pattern is highly distorted and the

sum pattern does not have its maximum at the intended steering angle.

Figures 14 and 15 display the patterns resulting when a jammer is

well within the 3 dB beamwidth, namely at 10 or a quarter of a beamwidth

away from the desired signal, and the steering angle is at 1.20 which

essentially points at the jammer. The jammer captures the null of the

difference pattern for both Pj=1O dBN and Pj=30 dBN. The high powered

jammer captures the first null of the sum pattern as well and creates a

major distortion of both sum and difference patterns. This null capture

may be responsible for the significant estimation error of the

monoestimator when the expected AoA is closer to the jammer than to the

desired signal and a much better behavior when the sum and difference

beams ate scanned away from the jammer, e.g., pointing toward negative

angles while the desired signal is at zero and the jammer at positive

angles. Other conclusions that can be drawn from the figures are that

the sum beam optimizes the reception of the signal from the expected AoA 2
and consequently a good initial angle, within a quarter of a beamwidth,
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is important. The difference beam is strongly affected by the jammer

and thus its null direction is usually biased. Nevertheless the

resulting estimates of the monoestimator are quite good for a variety of

jammer locations as long as the initial or expected AoA is reasonably

accurate.

c) AoA Estimation in the Presence of Two Jammers

We consider now the estimated AoA in the presence of two jammers.

The desired signal is placed at 0=0. One of the jammersis fixed at 60

while the other jammer is located at varying angular distances from the

desired signal. The estimated AoA is shown in Figure 16 as a function

of the second jammer direction. Comparing the estimates with that of

Figures 3 and 5, one finds that the quality of the estimate is about

the same as in the presence of one jammer. The additional jammer (fixed

at 60) does not seem to degrade the performance of the two estimators.

The reason for the lack of degradation in performance is that the

additional jammer is at a large angular distance (over a beamwidth) from

the desired signal AoA. When the two jammers are within a BW of the

desired signal AoA their effect is, of course, much more pronounced.

Figures 17 and 18 show the plot of the Q-function as a function of the

scan angle. In Figure 17 one of the jammers is at a large angular

separation from the desired signal (8' or 2 beamwidths), while in Figure

18 both jammers are within a BW of the desired signal. Note that in

Figure 18 the minimum is not as sharp as that in Figure 17 and is

displaced from the true AoA. One solution to this problem is to

increase the array size. Figure 19 shows the Q-function plot for a 10
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Figure 16. Estimated AoA in the presence of two jammers using

a 5 element array as a function of second jammer

direction. Averaged over 20 samples.

Signal Power Ps-10 dBN

Jammer Power Pjl=30 dBN, jammer fixed at Ojl= 6 '

Pj2=10 dN.

Mono resulting from expected AoA of -2

x 0Mono resulting from expected AoA of -0.40

+ 0Mono resulting from expected AoA of +1.20
A

o 6Q for angular sampling density of 1.60

*0 1 and( : 0 for Pj1=10 dRN, Pj2=30 dBN
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Figure 17. Plots of the Q-function averaged over 10 samples and

estimated AoA for different scenarios. 5 element

array at 2.5X (03d= 4 .20 ). Angular sampling

interval 1.60 for 6Q. Desired signal power Ps=10 dRN,

true AoA Os=0 °* Jammer powers: PjI=30 dBN, jammer

fixed at 6-1-80

x Pj2=30 dBN, 8j2= 6 .90

o Pj230 dBN or 50 dBN, 8j2=2'

+ Pj2=30 dN or 50 dRN Gj2=10

0l Pj2=30 dN or 50 dRN, 0j2= 0 .5°

N Pj2=50 dBN, Oj2=-0 .5 °

0 Pj2=30 dRN or 50 dRN, 6j2=-I °
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Figure 18. Plots of the Q-function averaged over 10 samples.

5 element array at 2.5X (e3dB= 4.20). Angular

6 sampling interval 1.60 for 8Q. Desired signal

power P5=10 dBN, true AoA OS=00. Jammers: jammer

1 fixed at 6j1=2'.

6 x Pj1=3O dBN; Pj2=3O dBN, Oj2=10

o Pil=30 or 50 dBN; Pj2=30 dBN, Oj2=0.5'

9 Pj1=30 or 50 dBN; Pj2=30 dBN, Oj2=-l.O'

+ Ps=20 dBN; Pj1=5O dBN; Pj2=3O dBN, Oj2=O.So
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Figure 19. Plots of the 0-function averaged over 10 samples,

and estimated AoA for different scenarios. 10 element

array at 2.5X (03 dB= 2 .1°). Angular sampling

*I interval 0.8' for 9Q. Desired signal power Ps=10 dON,

true AoA Os=O °. Jammer power: Pj1=30 dN, jammer fixed

at aj1:2*

x Pj2=30 dBN; Oj2= 10

o Pj2=30 dN or 50 dBN, 0j2=0 . 5 °

O Pj2=30 d8N or 50 dRN, Oj2=- 0 . 1 °

* Pj2=30 dRN, 6j2= 0.5'
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element array (BW=2.1*). The samples are taken at double the previous
4-1

rate since the beamwidth is halved. The estimates are good for two :

close in jammers, the fixed jammer, however is only slightly inside the

3 dB beamwidth so the performance should be good.

4.2 Estimated Covariance Matrix

In this section the estimation of the AoA is carried out based on

an estimated covariance matrix rather than a known one. Most of the

results presented are for the Q-estimator, since the monoestimator

yields about the same performance for the estimated covariance matrix

case as for the known covariance matrix as long as the initial or

"guess" angle is fairly good. In general the influence of the matrix

estimation is small as long as the number of independent time samples Ns

used is high enough. The minimum number of time samples necessary in

order to insure that the covariance matrix is nonsingular equals the

number of antenna elements, L. Good results are achieved for values of

Ns between L and 2L.

In the figures depicting the Q-function or Ql-function the

continuous lines correspond to the case for the highest number of

samples and also the "known covariance" matrix used for estimation,

while the sparsest (dashed) lines correspond to the case when the fewest

time samples have been used in the estimation of M. Thus the dash-dot

line corresponds to the intermediate number of samples. The number of

samples used for obtaining the AoA estimates shown are 5, 10 and 0

respectively. The "0" corresponds to the known covariance matrix.
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* .a) AoA Estimation in the Absence of All Jammers

Figure 20 shows the estimated AoA using the monoestimator in the

absence of all jammers. The input desired signal-to-noise ratio is 10

.. dB per element. Results are given for different numbers of time samples

used in the estimation of M. Estimated AoA's using a known covariance

matrix are also shown. Note that the accuracy of the estimated AoA when

the number of samples is equal to the number of elements is just as good

as that for the known covariance matrix. This is also true for the

Q-estimator (Figures 21 and 22).

When comparing the different figures note that the scale used for

the Q-function is in dB--normalized relative to individual noise per

element, that is the Q-function of Equation (22) is expressed directly

in dB.

In Figure 21, the Q-function is plotted as a function of the

scanning direction, while Figure 22 gives the plot of the Ql-function.

Note that the Q-function has a sharper minimum than the Q1-function.

But the Q-function involves more calculations (Equation (22)). It

involves approximately L(L+I) extra multiplications per time sample.

The array under consideration has five elements and for high input

signal-to-noise ratio per element (-10 dB), as anticipated in a TDMA-

system, the number of time samples can be chosen rather small. The QI-

function will, therefore, not be considered in the calculation of the
01

estimated AoA.

b) AoA Estimation in the Presence of One Jammer

* Figure 23 shows plots of the Q-function and the Q-estimates of the
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4 Figure 20. Estimated AoA as a function of the assumed AoA for the

monoestimator. Averaged over 20 samples, P5=l0 dRN,

eQ=0* No jamming. 5 element array. + M(6), *M(9),

4 o M(12),©DM known.
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4 Figure 21. Q-function versus 6 for 5 element array. Averaged

over 5 samples. P5=10 dRN, O5=00, No jamming.

NR of Samples for Matrix: 5 10 0

Estimated AoA: (Dleg) 0.04 0.10 0.08
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Figure 22. 01-function versus e for 5 element array. Averaged

over 5 samples. P5=10 ORN, os=0-, No Jamming.

NR of Samples for Matrix: 5 10 0

.6Estimated AoA: (Deg): 0.04 0.11 0.08
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Figure 23. 0-function versus e for 5 element array in the presence

of one jammer. Averaged over 5 samples. Ps=1 dRN,

es=O*, Pj=lO dBN, Oj=4 ° .

NR of Samples for Matrix: 5 10 0

Estimated AoA: (Deg): 0.06 0.14 0.14
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AoA in the presence of a single jammer when the jammer and the desired

signal are at an angular separation of approximately one beamwidth. The

jammer-to-noise ratio at each element is 10 dB. Note that the estimate

using the estimated covariance matrix is as good as when using the known

covariance matrix. The Q-function has a well defined minimum. Figure

24 shows the result when the jammer is moved closer to the desired

signal (angular separation 1°). Note that the minimum is less

pronounced, and the estimated AoA is less accurate.

In Figure 25, the jammer-to-noise ratio is increased to 30 dB while

the separation between the jammer and the desired signals is still 10.

Note that the difference between the true AoA and the estimated AoA has

increased. Thus a close strong jammer reduces the accuracy of the

AoA estimate. Again the estimate using the estimated covariance matrix

produces a less accurate result than the estimate using a known

covariance matrix.

c) AoA Estimation in the Presence of Two Jammers

Figure 26 shows a plot of the Q-function and the estimated AoA

using the Q-estimator in the presence of two strong jammers. Both jammers

4 are at angular separations of more than one beamwidth from the desired

signal. Note that the minimum of the Q-function is well defined and the

estimated AoA is quite accurate (within 10 percent of the 3 dB

beamwidth). Thus, as observed for the known covariance matrix case the

array can take care of two jammers outside its mainbeam. Further, the

accuracy of the estimated AoA using the estimated and the known

covariance matrices is the same.
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Figure 24. 0-function versus 8 for 5 element array in the presence

of one jammer. Averaged over 5 samples. P5=10 dRN, Os=

0', Pj=1: dN, :j=i0.

NR of Samples for Matrix: 5 1n 0

Estimated AoA: (Deg): 0.14 0.21 0.18
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Figure 26. 0-function versus 0 for 5 element array in the presence

L of two jamnmers. Averaged over 5 samples. P5=lfl dRN,

BSO', Pjl=30 AfN, O011=6', PJ2=30 dRN, BJ2=8 '*

NR of Samples for Matrix: 5 1n 0

Estimated AoA: (Deg): -0.19 -0.20 -0.16
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In Figure 27, one of the jammers is moved inside the main beam of

the array. The performance of the array is the same as in the presence

of a single incident jammer inside the main beam. The minimum is less

pronounced and the estimated AoA is not as accurate as in Figure 26j

(where both jammers are outside the main beam). The accuracy of the

estimated angle is strongly dependent on the accuracy of the estimated

covariance matrix. It can be seen that the angle of arrival error drops

by a factor of two as the number of samples used to estimate the

covariance matrix is doubled. It again is halved when the exact or

known covariance matrix is used. This is in contrast with previous

results when the jammers were outside the main beam. Under those
conditions the AoA estimate was essentially independent of the number of

samples used in estimating the covariance matrix. It appears that with

jammers well within the main beam, the effective desired signal to

jammer plus noise ratio deteriorates to the point that minor errors in

the covariance matrix have a significant affect on the final estimate.

The same phenomenon is evident in Figure 28 where both jammers are

within the main beam. The accuracy of the estimate deteriorates further

and is strongly dependent on the number of samples used in the

covariance matrix estimation. Even 10 samples, although yielding better

results than 5 samples, do not reduce the error significantly, a larger

sample size is apparently needed since for the exact or known covariance

the error drops by a factor of three down to a tenth of a beamwidth. It

should be noted, however, that even with this difficult scenario the AoA

estimate with a 10 sample average is in error only a quarter of a 3 d8

beamwi dth.
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Figure 27. Q-function versus 8 for 5 element array in the presence

4 of two jammers. Averaged over 5 samples. Ps=10 dRN,

OS=O0, P1jl=30 dON, Ojl=2*, PJ2= 30 dBN, OJ2=6'.

NR of Samples for Matrix: 5 10 0

4 Estimated AoA: (Dleg): 1.46 -0.65 -0.30
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Figure 28. Q-function versus 0 for 5 element array in the presence

0 of two jammers. Averaged over 5 samples. P5 =120 dON,

OSO' Pj1j=30 ORN, 031=20' Pu-3 dRN, 032=30.

NR~ of Samples for Matrix: 5 10 0

Estimated AoA: (Deg): 1.53 1.20 0.43
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5. SUMMARY AND CONCLUSIONS

The objective of this work was to find a method for the AoA

estimation of a desired signal in the presence of multiple jammers.

The AoA was to be estimated in the presence of jammers at various

angular distances to the desired signal, including close-in jammers.

Two estimators, a monoestimator and a Q-estimator based on the

I maximum likelihood estimate were studied. Both estimators use the

covariance matrix of the element signals. During the estimation of the

covariance matrix the desired signal was assumed to be absent. This

requirement can be satisfied in a TDMA system since the timing of the

uplink (desired) signals are accurately controlled.

The monoestimator is a local estimator and in the absence of c:,

jammers performs like a monopulse system. It requires, however, a -,.:or

knowledge of the AoA (within half a beamwidth) of the desired signal. .J

If the expected AoA is not within a half beamwidth of the true AoA,

the monoestimator generally breaks down. Such d priori knowledge is not

always available, as in the case of mobile terminals (the system

beamwidth is kept small to keep the jammers outside the main beam and

4 provide high gain). The mon~estimator can, however, be beneficial as a

method to improve a preliminary estimate achieved by some other

techniques. Some knowledge of the jamming scenario can also be used to

4 improve the accuracy of the monoestimator.

The Q-estimator is a global estimator, in the sense that no

previous knowledge of the AoA of the desired signal is needed. It gives

very accurate estimates of the AoA, to within a tenth of a beamwidth, as
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long as the jammers are not inside the mainbeam of the array. But even

for close-in jammers the estimated AoA is still within a quarter of a

beamwidth. If further accuracy is required, this estimate can be used

to provide the preliminary estimate for the monoestimator.

The effect of an estimated covariance matrix (M) on the estimated

AoA was also studied. It was found that the number of independent

sample element signals used to estimate the covariance matrix should be

somewhat larger than the number of array elements (L). The Q-estimator

using the estimated covariance matrix gave very accurate estimates for

jammers outside the mainbeam of the array. As the angular separation

between the jammers and the desired signal decreased the estimates

deteriorated somewhat, but still were within a quarter of a beamwidth of

the array. The monoestimator did not degrade significantly as long as

the "expected" angle was within a quarter of a beamwidth of the true

angle.

6
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